Advances in Synthetic Diamond Detectors Dosimetry

M. Pimpinella¹, R. Consorti², M.D. Falco³, M. Marinelli⁴, G. Verona-Rinati⁴

¹ENEA, National Institute of Ionizing Radiation Metrology, Rome, Italy
²San Filippo Neri Hospital, Rome, Italy
³Rome “Tor Vergata” University General Hospital, Dept. of Diagnostic Imaging Molecular Imaging Interventional Radiology and Radiotherapy, Rome, Italy
⁴Rome “Tor Vergata” University, Dept. of Industrial Engineering, Rome Italy

maria.pimpinella@enea.it
Outline

• Introduction

• Overview of novel synthetic diamond detectors

• Single crystal diamond diode and PTW microDiamond

• Diamond diode dosimetric characteristics

• Diamond diode results in clinical beams

• Conclusions
Introduction

• **Diamond detectors**: solid state dosimeters with high spatial resolution and low energy dependence, suitable for small field dosimetry

• **Synthetic diamond detectors**: introduced to overcome the high cost and long delivery time of detectors based on natural gems

• **Polycrystalline CVD diamonds**: major drawbacks of detectors are high-dose pre-irradiation, poor stability, slow dynamic response (all drawbacks related to the presence of a significant amount of impurities in the diamond crystal)

• **Single crystal CVD diamonds**: in recent years detectors have been fabricated starting from high-purity synthetic crystals. However, the detector performance does not depend only on the crystal quality.
Single crystal diamond detectors

• Detectors fabricated in a sandwich structure metal-diamond-metal using commercial single crystal diamond plates

 ▪ detector-grade quality diamond by Diamond Detector Ltd (500 μm – 4.7x4.7 mm²)
 ▪ diamond-like carbon /platinum /gold ohmic contacts (3-16-200 nm – Ø 3 mm)
 ▪ valuable results only for one detector operated with -10 V polarizing voltage

 ▪ electronic-grade diamond from Element Six Ltd (165 μm – 1 x 1 mm²)
 ▪ aluminium electrodes (100 nm thickness)
 ▪ good results with a detector operated with a bias voltage of 50 V
High sensitivity 44.5 nC Gy$^{-1}$
Dose rate dependence within 1%
Low energy dependence (1.2 % from 6 to 18 MV)

Reproducibility of detector properties among different samples has not been investigated
Single crystal diamond diode (SCDD) developed at Rome “Tor Vergata” University

- Sensitive volume 0.004 mm³
- Sensitive volume diameter 2.2 mm
- Sensitive volume thickness 1 μm
- Sensitivity ~1 nC/Gy

A built-in potential at the metal-to-intrinsic diamond interface allows the device to work as a Schottky diode

Very favourable results have been obtained with an early dosimeter prototype
From SCDD to microDiamond

- **Engineered dosimeter (pre-market prototype)**
 - PTW-like housing developed in conjunction with PTW-Freiburg
 - Changes in metallic contacts
 - Changes in HPHT substrate dimensions

- **microDiamond PTW No 60019, the first commercially available synthetic diamond dosimeter**
 - Design: waterproof, disk-shaped, sensitive volume perpendicular to detector axis
 - Measured quantities: absorbed dose to water
 - Nominal sensitive volume: 0.004 mm³
 - Reference point: on detector axis, 1 mm from detector tip, marked by ring
 - Nominal response: 1 nC/Gy
 - Detector bias: 0 V
 - Radiation quality: 100 keV ... 25 MV photons and (6 ... 25) MeV electrons
 - Field size: (1 x 1) cm² ... (40 x 40) cm²
SCDD: pre-irradiation, signal stability and reproducibility in Co-60 beam

- Signal stability within 0.5% after a pre-irradiation with a dose of 2 Gy
- Measurement repeatability ≤ 0.1 %
- Short term (1 day) reproducibility ≤ 0.2%
- Long-term (1 year) reproducibility within ± 0.5%
Dose-rate and dose-per-pulse dependence

- $y = 1.2759 \times 10^{-11}x + 1.0010 \times 10^{00}$
 - $R^2 = 1.0000 \times 10^{00}$

- $y = 1.3125 \times 10^{-11}x + 1.0011 \times 10^{00}$
 - $R^2 = 1.0000 \times 10^{00}$

60Co beam: dose rate from 0.2 Gy min$^{-1}$ to 1.3 Gy min$^{-1}$ varying the source-to-detector distance

Accelerator beams: dose rate from 0.8 Gy min$^{-1}$ to 5.8 Gy min$^{-1}$ varying the Linac pulse repetition frequency

Linearity index equal to unity within 0.2%

- Reference dosimeter: Farmer type IC
- Measurements performed in a megavoltage photon beam with SSD in the range $75 \div 322$ cm

The **SCDD response is independent of dose-per-pulse within ± 0.6%**
The SCDD response is measured against a Farmer type ionization chamber (PTW type 30013) in reference conditions.

Response variations are less than 1% from 6 MV to 15 MV photon beams.

\[D_{w_ref} = M_{IC} \, N_w \, k_{Q_TRS398} \]

\[D_{SCDD} = M_{SCDD} \, N_w \]

\(N_w \) determined in Co-60 beam.
SCDD energy dependence in electron beams

\[D_{w_ref} = M_{IC} N_w k_{Q_TRS398} \]

\[D_{SCDD} = M_{SCDD} N_w \]

N\(_w\) determined in Co-60 beam
Measurements performed at z\(_{ref}\) in water

The SCDD response is measured against a plane-parallel ionization chamber (type 34001 Roos) calibrated in terms of D\(_w\) in Co-60 beam

From 6 MeV to 18 MeV the SCDD response is independent of energy within 1%
Field-size dependence in photon beams (EGSnrc Monte Carlo calculations)

MC calculations indicate an over-response in field sizes below 2 cm

The uncertainty bars are the statistical uncertainties of MC calculations

(1) Pimpinella et al, *A synthetic diamond detector as transfer dosimeter for D_w measurements in photon beams with small field sizes*, Metrologia 49 (2012) S207-10
• Measurement performed in Co-60 beam at 5 cm depth in water
• Similar results have been obtained in high energy photon (1) and electron beams
• Variations < 0.5% for ± 30° tilt (in axial irradiation)

Excellent agreement between SCDD (early prototype) and a PinPoint ionization chamber (PTW 31014 in axial orientation)
Electron beams: PDD and profile measurements

Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry

Radiotherapy electron beams collimated by small tubular applicators: characterization by silicon and diamond diodes

Good agreement with different types of ICs in PDD measurements

Excellent agreement with an unshielded silicon diode (PTW 60017) in profile and PDD measurements
Comparison of relative output factors (ROF) for square fields with side from 2 cm to 40 cm
Reference dosimeter:
Farmer type IC from 5 cm to 40 cm
PinPoint chamber from 5 cm to 2 cm
Output factors by SCDD and IC agree within ± 1% from 2 cm to 40 cm field sizes
A comparison in FFF beams is described in ESTRO 33 EP-1468
Photon beams: measurements in small fields

Metrologia 49 (2012) S211-214

Comparison of D_w measurements by alanine and synthetic diamond dosimeters in photon beams with $1 \text{ cm} \times 1 \text{ cm}$ field size

M Pimpinella1, M Anton2, M Rouijaa3 and A Stravato1

Radiother Oncol 2013; 109(3): 356-360

Detector comparison for small field output factor measurements in flattening filter free photon beams

Wolfgang Lechnera,b, Hugo Palmansc, Lukas Sölknera,b, Paulina Grochowskad, Dietmar Georga,b

Dose response is measured for various microdetectors including microDiamond against alanine dosimeters in 10 - 6 MV FFF and FF beams with field sizes from 10×10 to 0.6×0.6 cm2

The microDiamond dose response ratio ranges from unity in large fields to 1.042 in the smallest field size

Br J Radiol 2014; 87:20130768

Evaluation of a synthetic single-crystal diamond detector for relative dosimetry measurements on a CyberKnife™

A CHALKLEY, MSc, BSc and G HEYES, PhD, MSc

ROF are measured in beam with diameter from 6 cm to 0.5 cm using different detectors including microDiamond

In the smallest fields, correction factors are closer to unity for the microDiamond compared to other dosimeters
Photon beams: dose verification

Med. Phys. 40 (9), September 2013

A synthetic diamond diode in volumetric modulated arc therapy dosimetry

Margherita Zani, Marta Bucciolini, Marta Casati, and Cinzia Talamonti
Dipartimento di Scienze biomediche, sperimentali e cliniche, Università degli Studi di Firenze - Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, I-50134 Firenze, Italy

Marco Marinelli, Giuseppe Prestopino, Alessia Tonnetti, and Gianluca Verona-Rinati
INFN-Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata”, Via del Politecnico 1, I-00133 Roma, Italy

- **Point dose measurements by SCDD (PTW-like housing prototype) compared to ionization chamber (Exradin A1SL) measurements and dose calculations by TPS (Philips Pinnacle Smart Arc)**

- **Comparable values from SCDD and ionization chamber for dose difference (DD) and distance-to-agreement (DTA)**

- **SCDD measurements in better agreement with TPS calculations, especially in the high gradient region**
Proton beams measurements

Med. Phys. 40 (12), December 2013

Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams

A. K. Mandapaka, A. Ghebremedhin, and B. Patyal
Department of Radiation Medicine, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, California 92354

Marco Marinelli, G. Prestopino, C. Verona, and G. Verona-Rinati
INFN-Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", Via del Politecnico 1, 00133 Roma, Italy

ESTRO 33-2014 EP-1469

SCDD compared to Markus p-p chamber
Differences in peak-to-plateau ratio lower than 2%

SCDD compared to an Exradin A16 micro-chamber
Smaller penumbra values by SCDD
Proton beams: small fields

126 MeV proton beam, circular brass collimators, beam diameter 1, 2 and 3 cm

SCDD compared to an Exradin A16 IC
Differences in the peak to plateau ratio lower than 1%
Conclusions

• The first commercially available synthetic diamond dosimeter, PTW microDiamond type 60019, is based on a single crystal diamond diode, SCDD, produced in Rome “Tor Vergata” University laboratories.

• Dosimetric properties of SCDD detectors have been favourably evaluated in a wide range of measurements conditions including photon, electron and proton beams with small field sizes.

• SCDD performance is comparable to that of well assessed dosimeters for measurements in standard conditions.

• Advantages of SCDD have been demonstrated in challenging dosimetry when high spatial resolution and energy independence are required.
Aknowledgements

P. Bagalà
I. Ciancaglioni
V. De Coste
C. Di Venanzio
A. S. Guerra
E. Milani
A. Petrucci
F. Pompili
G. Prestopino
R. Santoni
A. Stravato
A. Tonnetti
C. Verona